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ABSTRACT
In this paper, we describe improvements to the pronunciation model
featured in the 1998SPRACH Broadcast News evaluation system.
Various smoothing and pruning techniques and the integration of
confidence scores into the pronunciation model training provided a
4% relative improvement over the baseline model. We also report
on promising new techniques that did not appear in the evaluation
system.

1. INTRODUCTION
A recent surge of efforts in automatic pronunciation modeling within
the ASR community has yielded mixed results for large-vocabulary
speech recognition systems. Simply adding raw pronunciations
from phone recognition to a dictionary can vastly increase decoding
time, often with very little benefit. It is therefore important not only
to discoverwhatalternative pronunciations are possible, but also to
introduce extra pronunciations onlywhenthey are needed. In the
work described in this paper we sought to discover ways in which
we could improve the baseline lexicon for the SPRACH Broadcast
News System [1]. We used the tools of static1 baseform learning and
decision-tree (d-tree) modeling to determine a range of new pronun-
ciation alternatives. Posterior probability-based acoustic confidence
measures derived from the system’s connectionist acoustic model
and new pruning techniques guided our selection of baseforms.
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Figure 1: Encapsulation of decoding for different pronunciation
models using finite state grammars.

1We contraststatic pronunciation models with those that are sensitive to
contextual factors such as speaking rate.

This year’s evaluation brought several new challenges in pronuncia-
tion modeling. Our primary focus was to apply lessons learned from
automatic pronunciation modeling work in the Switchboard domain
[7, inter alia], increasing the diversity of pronunciations in the dic-
tionary. We were also faced with the issue of novel words— a vocab-
ulary that spans current affairs is crucial for Broadcast News (BN)
recognition. For words that did not occur previously in our dictio-
nary, likeLewinsky, we needed to generate new baseforms quickly.

Each of these tasks required considerable new machinery in our
training system. In order to save effort in implementing these dis-
parate functions, we reorganized our pronunciation software around
a finite state grammar (FSG) decoder (Figure 1). The modularization
of Viterbi alignments into an FSG compilation stage and a decoding
stage allowed for novel compilation techniques without our having
to completely rewrite the decoder. Thus, we could easily implement
new pronunciation models (such as a letter-to-phone model for new
words) as long as the output of the procedure was a valid finite state
grammar. The decoder can also be used to rescoren-best lists, facil-
itating the use of complex pronunciation models.

One of the benefits of using a connectionist acoustic model in
conjunction with our FSG decoder is the availability of posterior
probability-based acoustic confidence measures at both the phone
and the word levels [8]. We found these acoustic confidence mea-
sures useful on several occasions as a guide to model building, in-
cluding selection of pronunciations and checking automatically cre-
ated models for novel words.

Since the acoustic model was being developed at the same time
as the pronunciation models, we had the option of using either an
acoustic model that was not as good as the evaluation model or a
shifting acoustic model baseline. We opted for the former; as a
consequence, many of the word error rate (WER) results reported
here are 3-4% higher than those obtained using our final evaluation
system. We combined the 1997ABBOT PLP-based recurrent neu-
ral network (RNN) context-independent phone classifier [3] with a
4000 hidden unit multi-layer perceptron (MLP) using modulation-
filtered spectrogram features [6]. Both networks were trained only
on the 1997 BN training data. For fast turnaround development test-
ing, we used a half-hour subset of the 1997 evaluation set (labeled
Hub-4E-97-subset), which also increased error rates by roughly 2%
over the full 1997 evaluation set.

2. GENERATION OF NEW
PRONUNCIATIONS

The baseline lexicon was derived from the 1996ABBOT Broadcast
News transcription system [2] and contained an average of 1.10 pro-
nunciations per word for a 65K vocabulary. In order to increase the



Decoding Parameters
Lexicon 7 Hyp. WER (%) 27 Hyp. WER (%)

Baseline:ABBOT 96 29.9 27.5
Augmented:�=0.5 28.9 27.1

Table 1: Word error rate on Hub-4E-97-subset for static lexica.

number of pronunciations available to the recognizer, our first task
was to align thecanonicaltranscription of the acoustic training data
against analternativetranscription. The canonical transcription was
obtained from a forced Viterbi alignment of the reference word se-
quence to the training data using the baseline lexicon, whereas the
alternative transcription was obtained by running the recognizer us-
ing only the phone-level constraint of a phone bigram. Each tran-
scription covered the 100-hour 1997 training set.

In the second stage of the pronunciation model learning process,
we trained d-trees to predict the phone-recognition realization of a
dictionary phone using the alignment between the canonical and al-
ternative transcriptions. D-trees estimated a probability distribution
over the realization of dictionary phones using the identity, manner,
place, and syllabic position of each phone and its immediate neigh-
bors as contextual features. 90% of the 1997 BN training data was
used for training the d-trees, and 10% for tree pruning. The distri-
butions from the d-trees were then compiled into an FSG: for the
nth phone in the canonical transcription, the appropriate tree distri-
butiond was found. Between nodesn andn+ 1 in the FSG, an arc
was added for every recognition phone ind, appended with the ap-
propriate probability. Phone deletions were accommodated through
the insertion of null transitions. Some smoothing was applied to this
FSG construction by disallowing any transitions with below thresh-
old probabilities (the threshold was arbitrarily set to 0.1).

Following d-tree training and FSG compilation, in the third stage
we created a new static lexicon. The compiled FSG was realigned to
the training data to obtain asmoothedphone-constraint decoding in
the spirit of Rileyet al. [7] (although they used hand-transcriptions
as a starting point, rather than phone recognition). Since the FSG
decoder produced both a word and phone alignment, the new alter-
native transcription was easily converted into a new static lexicon
for our full first-pass decoder (NOWAY). However, we found that
the resulting lexicon was still too noisy, particularly for infrequently
occurring words. We therefore merged the newly obtained pronun-
ciations with those from the baselineABBOT 96 lexicon, using the
following interpolation:

PL(pronjword) = �PLnew(pronjword)+(1��)PLabbot
(pronjword)

The value of the empirically determined smoothing parameter� did
not affect results much within a broad range of values, so we set
� = (1 � �) = 0:5. Since the weighting factor can be interpreted
as a measure of trust in the source of a word’s baseforms, a possible
strategy would be to make� dependent upon frequency of a word’s
occurrence in the training data, although we have not tried this.

In a narrow pruning beam width decoding (Table 1:7 hypothesis de-
coding), the augmented dictionary outperformed theABBOT 96 dic-
tionary. When a wider beam width was used (max 27 hypotheses)
the augmented lexicon still provided a gain, but by a smaller margin.

Lexicon Pruning Style % WER Timing

Baseline n/a 29.9 1.81� RT
Augmented no pruning 28.9 6.69� RT

prune low ppron<0:1�pmax 29.5 2.50� RT
probability prons ppron<1:0�pmax 31.4 1.85� RT

Count-based pruning log count� =1.2 28.8 2.72� RT

Table 2: Word error rate on Hub-4E-97-subset for various pruning
methods using narrow (7 Hypothesis) decoding parameters.

3. DICTIONARY PRUNING
The new dictionary described above increased the number of pro-
nunciations per word from 1.10 to 1.67, but decoding time increased
almost four fold, which was devastating for our 10� real time sys-
tem. In order to reduce the number of pronunciations and hence the
decoding time, we investigated two dictionary pruning techniques.
In our traditional pruning scheme, baseforms were removed from
the lexicon if they had a prior probability that was less than some
fraction ofpmax, the prior of most probable baseform for the word.
While this significantly reduced decoding time, it also halved the
gains from the new dictionary, as shown in Table 2. Reducing the
lexicon to a single baseform per word (pruning level 1.0) also sig-
nificantly hurt performance with no corresponding speedup relative
to the baseline.

Since high-frequency words usually have more pronunciation vari-
ants in continuous speech, we developed a new pruning technique
based on the number of occurrences of the word in the training data.
In this second scheme, the maximum number of baseforms per word
wi was determined by

# baseforms(wi) = � log10 count(wi) ;

where� is a tunable parameter to shift the log scaling. Then most
likely baseforms for each word included in the lexicon. As shown in
the bottom section of Table 2, this method facilitated lower decoding
times (only 1.5 times that taken by the baseline) without any increase
in WER relative to the unpruned lexicon. The results in Table 3 show
that gains provided by the log-count pruning scheme carry over to
the wider beam decoding condition. A lexicon pruned using this
second scheme was therefore selected for use in theSPRACH98 sys-
tem; we found that the modest improvements from this lexicon were
duplicated across test sets (including the full 1997 Hub4 Evaluation)
and with different acoustic models.

Following the evaluation, we computed the posterior probability
based average acoustic confidence scores for the baseforms in the
unpruned lexicon from a forced Viterbi alignment to the 1997 BN
training set. Baseforms were reselected using the log-count pruning

Lexicon WER (%) Decode time

Baseline 27.5 21.73 x RT
New: no pruning 27.1 72.03 x RT

log count (SPRACH98) 26.9 33.07 x RT
confidence log count 26.6 30.45 x RT

Table 3: Word error rate on Hub-4E-97-subset for various pruning
methods using full (27 Hypothesis) decoding parameters.



scheme according to their confidence-based rankings; this provided
a small boost to performance both in terms of decoding time and
recognizer accuracy.

4. CONFIDENCE-BASED EVALUATION OF
NOVEL WORD PRONUNCIATIONS

As indicated in the introduction, one problem we encountered was
determining pronunciations for novel words not already in our dic-
tionary that occurred either in the training transcriptions or in lan-
guage model training texts. Within our pronunciation software
framework, this involved construction FSGs directly from the or-
thography of the word, using acoustic alignment to determine the
best pronunciation.

Building models to predict the pronunciation of a word from its or-
thography required two steps: (1) we aligned the letters in the dic-
tionary to corresponding phones using a hidden Markov model; and
(2) we trained letter-to-sound d-trees to estimate the probability dis-
tribution over phones given a central letter and the context of three
letters to the left and three letters to the right.

Given a set of letter-to-sound trees, it was then possible to construct
a (bushy) pronunciation graph for a novel word, and align this graph
to acoustics using the FSG decoder. We view the matching of this
graph to the acoustic models as the critical gain of this technique;
using a text-to-speech system that was uninfluenced by our acoustic
models would likely produce pronunciations with different proper-
ties than those in our baseline dictionary.

The FSG alignment could only be performed on words for which
we had sample acoustics. Therefore, we recorded subjects reading
aloud from word lists presented by the computer for several thou-
sand novel words present only in the language-model training texts.
The Viterbi alignment of the graph to the acoustics provided both a
putative baseform and also an acoustic confidence score. Using this
procedure, pronunciations for 7,000 novel words were incorporated
into the 1998SPRACHsystem. While the procedure was far from
perfect, spot checks of the high-confidence novel baseforms showed
them to be more reliable than the low-confidence ones. We therefore
focused hand correction efforts on lower confidence pronunciations.

5. MULTI-WORD AND DYNAMIC
DICTIONARIES

Since the pronunciation of a word is dependent upon contextual fac-
tors such as the words that follow and precede it, word predictability
and speaking rate, we also investigated ways to add more contextual
influence into the pronunciation model.

5.1. Multi-word pronunciations
Our initial attempt at incorporating context was the creation of multi-
word baseforms. We elected to create baseforms for the approxi-
mately 4,000 word-pairs that occurred sufficiently frequently in the
training data to facilitate reliable baseform learning (i.e., those pairs
with 20 or more examples). Of these 4k pairs, 500 were selected for
inclusion in the lexicon and as single items in then-gram language
model. Three different ranking schemes were investigated:

MWconf Word-pairs were ranked according to their average in-
verse posterior confidence in a forced Viterbi alignment
of the training data.

WER (%) with WER (%) with
Lexicon ABBOT 96 SPRACH98

Baseline: Dictionary alone 31.9 30.5
+ MWconf 32.0 -
+ MWmi 32.0 30.5
+ MWmi+freq 31.3 30.5

Table 4: Word error rate on Hub-4E-97-subset for multi-word lexica.

MWmi Word-pairs were ranked according to the mutual infor-
mation between the frequency distributions of the set
of observed pronunciations (from the smoothed phone
recognition) for the two words (c.f. [4]).

MWmi+freq Because MWmi was found to rank some relatively in-
frequently occurring word-pairs highly, a third scheme
was devised that ranked pairs according to both their
mutual information and also the frequency of occur-
rence.

Smaller language models with and without multi-words were built
for quick testing purposes, resulting in an increase in baseline error
rate. The results from the multi-word experiments (table 4) were
inconclusive. When augmenting the baselineABBOT 96 dictionary,
multi-words chosen using the MWmi+freq scheme provided a small
improvement. This gain vanished, however, when the same multi-
words were incorporated into theSPRACH98 dictionary.

5.2. Word and syllable-based decision trees
As an enhancement of multi-word pronunciations, we developed d-
trees that predicted the pronunciation of words based on the iden-
tities of surrounding words. This can be considered an extension
of the above multi-word experiment, since the d-tree building tech-
niques used mutual information as the criterion for determining
branching splits. An added advantage of d-tree modeling is that
other features besides word identity can be used as d-tree features,
such as speaking rate and trigram probability, that correlate well with
pronunciation changes [5].

We built models for the 550 most frequent words using surround-
ing word identities, and the identities, manner, place, and syllabic
position of neighboring phones as features in the d-tree. We also in-
cluded information about word length, several estimates of speaking
rate, and the trigram probability of the word. Slightly less than half
of the trees in each case used a distribution other than the prior (i.e.,
were grown to more than one leaf).

In building the word trees, we found linguistically plausible pronun-
ciation changes. For example, in the tree forpresident(shown in
figure 2), when the following word wasClinton, Clinton’s,or Boris,
the final/t/ closure was very likely to be deleted. In addition, the
velarization of/n/ to [ng] was possible, a likely consequence of
the following /k/ in Clinton(’s). It is important to note that the ve-
larization requires the deletion of/t/ to be possible; it is easier to
learn these co-occurrences when units larger than individual phones
are modeled.

In order to increase coverage, we also trained roughly 800 d-
trees based on syllable distributions. Each word was given a sin-
gle canonical syllable transcription, so that words with similar
syllabic-internal pronunciation alternations in theABBOT 96 dictio-



NO YES

NO YES

Is next word one of:

{Clinton, Clinton’s,
  Boris}

Is previous word one of:

?

{for, the}
0.69 pcl p r eh z ih dx ax n
0.18 pcl p r eh z dx ax n
0.10 pcl p r eh z ih dx ax ng

?

0.47 pcl p r eh z ih dx ax n

0.14 pcl p r eh z ax n
0.33 pcl p r eh z ih dx ax n tcl

0.89 pcl p r eh z ih dx ax n tcl
0.06 pcl p r eh z ih dx ax n
0.05 pcl p r eh z dx ax n

Figure 2: Decision tree for the word “president.”

nary shared the same syllable model. In addition to the features
found in the word trees, we informed the the syllable trees about
the lexical stress of the syllable, position within the word, and the
word’s identity.

Since the pronunciation scoring required knowledge of the following
word in the hypothesis, we were not able to implement these models
in our first-pass (NOWAY) decoder. Therefore, we used the dynamic
pronunciation model with two decoding strategies: (1) we rescored
n-best lists (withn = 100) constructed by theNOWAY decoder us-
ing our best static models; and (2) we implemented a lattice decoder
that re-evaluated word probabilities in the context of a hypothesis.
Table 5 summarizes our preliminary results.

In order to test the influence of the decoding process on the results,
we recomputed the baseline with then-best decoder and the lattice
decoder using theSPRACH98 static dictionary. The results in both
cases were similar to those of the first-pass decoding (26.9%). The
dynamic trees gave us a small (non-significant) increase in accuracy
over our improved static lexicon, with syllable trees performing the
best. The difference between lattice decoding andn-best rescoring
seems to be minimal in this test. We intend to study further the fea-
tures and models that were most effective in this framework, and the
conditions under which they were effective. For example, the 0.4%
difference betweenn-best decoding with theSPRACH98 dictionary
and the syllable trees was accounted for almost completely by a
1.4% improvement in WER in the spontaneous broadcast speech fo-
cus condition.

6. CONCLUSIONS
Appropriate smoothing and pruning methods play an important part
in building dictionaries for large vocabulary recognition. Particu-

Lexicon 100-best rescoring lattice rescoring

Baseline:SPRACH98 26.7% 27.0%
Word trees 26.5% 26.6%
Syllable trees 26.3% 26.4%

Table 5: Hub4E-97-subset WER for dynamic tree models.

larly when building our 10� real-time system, we found that it is not
enough to determinewhat new pronunciations we can install into a
new dictionary. One must also considerwhenthese pronunciations
should be used, either in terms of lexical pruning or determining
which pronunciations are appropriate within context.

Using decision-tree smoothing of phone recognition to determine
what new pronunciations were viable, and a new logarithmic prun-
ing method to decide when to employ these new models, we were
able to improve recognition on Broadcast News by about 1% abso-
lute. Confidence measures played a part in identifying which pro-
nunciations matched the recognizer acoustic model, guiding model
selection and verification of baseforms for novel words. Finally,
contextual methods of determining pronunciations yielded a small
improvement in our initial experiments; we feel that more study is
needed in this promising area.
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